Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Vaccine ; 2023.
Article in English | EuropePMC | ID: covidwho-2297194

ABSTRACT

Background During the COVID-19 pandemic multiple vaccines were rapidly developed and widely used throughout the world. At present there is very little information on COVID-19 vaccine interactions with primary human immune cells such as peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages and dendritic cells (moDCs). Methods Human PBMCs, macrophages and moDCs were stimulated with different COVID-19 vaccines, and the expression of interferon (IFN-λ1, IFN-α1), pro-inflammatory (IL-1β, IL-6, IL-8, IL-18, CXCL-4, CXCL-10, TNF-α) and Th1-type cytokine mRNAs (IL-2, IFN-γ) were analyzed by qPCR. In addition, the expression of vaccine induced spike (S) protein and antiviral molecules were studied in primary immune cells and in A549 lung epithelial cells. Results Adenovirus vector (Ad-vector) vaccine AZD1222 induced high levels of IFN-λ1, IFN-α1, CXCL-10, IL-6, and TNF-α mRNAs in PBMCs at early time points of stimulation while the expression of IFN-γ and IL-2 mRNA took place at later times. AZD1222 also induced IFN-λ1, CXCL-10 and IL-6 mRNA expression in monocyte-derived macrophages and DCs in a dose-dependent fashion. AZD1222 also activated the phosphorylation of IRF3 and induced MxA expression. BNT162b2 and mRNA-1273 mRNA vaccines failed to induce or induced very weak cytokine gene expression in all cell models. None of the vaccines enhanced the expression of CXCL-4. AZD1222 and mRNA-1273 vaccines induced high expression of S protein in all studied cells. Conclusions Ad-vector vaccine induces higher IFN and pro-inflammatory responses than the mRNA vaccines in human immune cells. This data shows that AZD1222 readily activates IFN and pro-inflammatory cytokine gene expression in PBMCs, macrophages and DCs, but fails to further enhance CXCL-4 mRNA expression.

2.
Front Bioeng Biotechnol ; 11: 1129111, 2023.
Article in English | MEDLINE | ID: covidwho-2305086

ABSTRACT

SARS-CoV-2 emerged at the end of 2019, and like other novel pathogens causing severe symptoms, WHO recommended heightened biosafety measures for laboratories working with the virus. The positive-stranded genomic RNA of coronaviruses has been known to be infectious since the 1970s, and overall, all experiments with the possibility of SARS-CoV-2 propagation are carried out in higher containment level laboratories. However, as SARS-CoV-2 RNA has been routinely handled in BSL-2 laboratories, the question of the true nature of RNA infectiousness has risen along with discussion of appropriate biosafety measures. Here, we studied the ability of native SARS-CoV-2 genomic RNA to produce infectious viruses when transfected into permissive cells and discussed the biosafety control measures related to these assays. In transfection assays large quantities of genomic vRNA of SARS-CoV-2 was required for a successful production of infectious viruses. However, the quantity of vRNA alone was not the only factor, and especially when the transfected RNA was derived from infected cells, even small amounts of genomic vRNA was enough for an infection. Virus replication was found to start rapidly after transfection, and infectious viruses were detected in the cell culture media at 24 h post-transfection. In addition, silica membrane-based kits were shown to be as good as traditional TRI-reagent based methods in extracting high-quality, 30 kb-long genomic vRNA. Taken together, our data indicates that all transfection experiments with samples containing genomic SARS-CoV-2 RNA should be categorized as a propagative work and the work should be conducted only in a higher containment BSL-3 laboratory.

3.
Nat Commun ; 14(1): 1637, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2270479

ABSTRACT

The emergence of increasingly immunoevasive SARS-CoV-2 variants emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Intranasal administration of neutralizing antibodies has shown encouraging protective potential but there remains a need for SARS-CoV-2 blocking agents that are less vulnerable to mutational viral variation and more economical to produce in large scale. Here we describe TriSb92, a highly manufacturable and stable trimeric antibody-mimetic sherpabody targeted against a conserved region of the viral spike glycoprotein. TriSb92 potently neutralizes SARS-CoV-2, including the latest Omicron variants like BF.7, XBB, and BQ.1.1. In female Balb/c mice intranasal administration of just 5 or 50 micrograms of TriSb92 as early as 8 h before but also 4 h after SARS-CoV-2 challenge can protect from infection. Cryo-EM and biochemical studies reveal triggering of a conformational shift in the spike trimer as the inhibitory mechanism of TriSb92. The potency and robust biochemical properties of TriSb92 together with its resistance against viral sequence evolution suggest that TriSb92 could be useful as a nasal spray for protecting susceptible individuals from SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Animals , Mice , Humans , Administration, Intranasal , COVID-19/prevention & control , Pandemics , Antibodies, Neutralizing , Mice, Inbred BALB C , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
4.
Front Immunol ; 14: 1099246, 2023.
Article in English | MEDLINE | ID: covidwho-2228044

ABSTRACT

Introduction: The prime-boost COVID-19 mRNA vaccination strategy has proven to be effective against severe COVID-19 disease and death. However, concerns have been raised due to decreasing neutralizing antibody levels after COVID-19 vaccination and due to the emergence of new immuno-evasive SARS-CoV-2 variants that may require additional booster vaccinations. Methods: In this study, we analyzed the humoral and cell-mediated immune responses against the Omicron BA.1 and BA.2 subvariants in Finnish healthcare workers (HCWs) vaccinated with three doses of COVID-19 mRNA vaccines. We used enzyme immunoassay and microneutralization test to analyze the levels of SARS-CoV-2 specific IgG antibodies in the sera of the vaccinees and the in vitro neutralization capacity of the sera. Activation induced marker assay together with flow cytometry and extracellular cytokine analysis was used to determine responses in SARS-CoV-2 spike protein stimulated PBMCs. Results: Here we show that within the HCWs, the third mRNA vaccine dose recalls both humoral and T cell-mediated immune responses and induces high levels of neutralizing antibodies against Omicron BA.1 and BA.2 variants. Three weeks after the third vaccine dose, SARS-CoV-2 wild type spike protein-specific CD4+ and CD8+ T cells are observed in 82% and 71% of HCWs, respectively, and the T cells cross-recognize both Omicron BA.1 and BA.2 spike peptides. Although the levels of neutralizing antibodies against Omicron BA.1 and BA.2 decline 2.5 to 3.8-fold three months after the third dose, memory CD4+ T cell responses are maintained for at least eight months post the second dose and three months post the third vaccine dose. Discussion: We show that after the administration of the third mRNA vaccine dose the levels of both humoral and cell-mediated immune responses are effectively activated, and the levels of the spike-specific antibodies are further elevated compared to the levels after the second vaccine dose. Even though at three months after the third vaccine dose antibody levels in sera decrease at a similar rate as after the second vaccine dose, the levels of spike-specific CD4+ and CD8+ T cells remain relatively stable. Additionally, the T cells retain efficiency in cross-recognizing spike protein peptide pools derived from Omicron BA.1 and BA.2 subvariants. Altogether our results suggest durable cellmediated immunity and protection against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Cellular , Humans , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Open Forum Infect Dis ; 9(12): ofac625, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2161131

ABSTRACT

Background: Previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection primes the immune system; thus individuals who have recovered from infection have enhanced immune responses to subsequent vaccination (hybrid immunity). However, it remains unclear how well hybrid immunity induced by severe or mild infection can cross-neutralize emerging variants. We aimed to compare the strength and breadth of antibody responses in vaccinated recovered and uninfected subjects. Methods: We measured spike-specific immunoglobulin (Ig)G and neutralizing antibodies (NAbs) from vaccinated subjects including 320 with hybrid immunity and 20 without previous infection. From 29 subjects with a previous severe or mild infection, we also measured NAb responses against Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529/BA.1) variants following vaccination. Results: A single vaccine dose induced 2-fold higher anti-spike IgG concentrations and up to 4-fold higher neutralizing potency of antibodies in subjects with a previous infection compared with vaccinated subjects without a previous infection. Hybrid immunity was more enhanced after a severe than a mild infection, with sequentially decreasing NAb titers against Alpha, Beta, Delta, and Omicron variants. We found similar IgG concentrations in subjects with a previous infection after 1 or 2 vaccine doses. Conclusions: Hybrid immunity induced strong IgG responses, particularly after severe infection. However, the NAb titers were low against heterologous variants, especially against Omicron.

6.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2073325

ABSTRACT

Since the start of the pandemic at the end of 2019, arising mutations in SARS-CoV-2 have improved its transmission and ability to circumvent the immunity induced by vaccination and previous COVID-19 infection. Studies on the effects of SARS-CoV-2 genomic mutations on replication and innate immunity will give us valuable insight into the evolution of the virus which can aid in further development of vaccines and new treatment modalities. Here we systematically analyzed the kinetics of virus replication, innate immune activation, and host cell antiviral response patterns in Alpha, Beta, Delta, Kappa, Omicron and two early pandemic SARS-CoV-2 variant-infected human lung epithelial Calu-3 cells. We observed overall comparable replication patterns for these variants with modest variations. Particularly, the sublineages of Omicron BA.1, BA.2 and a recombinant sublineage, XJ, all showed attenuated replication in Calu-3 cells compared to Alpha and Delta. Furthermore, there was relatively weak activation of primary innate immune signaling pathways, however, all variants produced enough interferons to induce the activation of STAT2 and production of interferon stimulated genes (ISGs). While interferon mRNA expression and STAT2 activation correlated with cellular viral RNA levels, ISG production did not. Although clear cut effects of specific SARS-CoV-2 genomic mutations could not be concluded, the variants of concern, including Omicron, showed a lower replication efficiency and a slower interferon response compared to an early pandemic variant in the study.

7.
Front Med (Lausanne) ; 9: 876532, 2022.
Article in English | MEDLINE | ID: covidwho-1993794

ABSTRACT

Background: Household transmission studies offer the opportunity to assess both secondary attack rate (SAR) and persistence of SARS-CoV-2 antibodies over time. Methods: In Spring 2020, we invited confirmed COVID-19 cases and their household members to four visits, where we collected nasopharyngeal and serum samples over 28 days after index case onset. We calculated SAR based on the presence of SARS-CoV-2 neutralizing antibodies (NAb) and assessed the persistence of NAb and IgG antibodies (Ab) against SARS-CoV-2 spike glycoprotein and nucleoprotein. Results: SAR was 45% (39/87), including 35 symptomatic secondary cases. During the initial 28-day follow-up, 62% (80/129) of participants developed NAb. Of those that seroconverted, 90% (63/70), 85% (63/74), and 78% (45/58) still had NAb to early B-lineage SARS-CoV-2 3, 6, and 12 months after the onset of the index case. Anti-spike IgG Ab persisted in 100% (69/69), 97% (72/74), and 93% (55/59) of seroconverted participants after 3, 6, and 12 months, while anti-nucleoprotein IgG Ab levels waned faster, persisting in 99% (68/69), 78% (58/74), and 55% (39/71) of participants, respectively. Conclusion: Following detection of a COVID-19 case in a household, other members had a high risk of becoming infected. NAb to early B-lineage SARS-CoV-2 persisted for at least a year in most cases.

8.
Nat Commun ; 13(1): 2476, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1890177

ABSTRACT

Two COVID-19 mRNA (of BNT162b2, mRNA-1273) and two adenovirus vector vaccines (ChAdOx1 and Janssen) are licensed in Europe, but optimization of regime and dosing is still ongoing. Here we show in health care workers (n = 328) that two doses of BNT162b2, mRNA-1273, or a combination of ChAdOx1 adenovirus vector and mRNA vaccines administrated with a long 12-week dose interval induce equally high levels of anti-SARS-CoV-2 spike antibodies and neutralizing antibodies against D614 and Delta variant. By contrast, two doses of BNT162b2 with a short 3-week interval induce 2-3-fold lower titers of neutralizing antibodies than those from the 12-week interval, yet a third BNT162b2 or mRNA-1273 booster dose increases the antibody levels 4-fold compared to the levels after the second dose, as well as induces neutralizing antibody against Omicron BA.1 variant. Our data thus indicates that a third COVID-19 mRNA vaccine may induce cross-protective neutralizing antibodies against multiple variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
9.
Emerg Infect Dis ; 28(6): 1286-1288, 2022 06.
Article in English | MEDLINE | ID: covidwho-1862552

ABSTRACT

We report an experimental infection of American mink with SARS-CoV-2 Omicron variant and show that mink remain positive for viral RNA for days, experience clinical signs and histopathologic changes, and transmit the virus to uninfected recipients. Preparedness is crucial to avoid spread among mink and spillover to human populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/veterinary , Humans , Mink
10.
Eur J Immunol ; 52(5): 816-824, 2022 05.
Article in English | MEDLINE | ID: covidwho-1825935

ABSTRACT

The emergence of SARS-CoV-2 Omicron variant (B.1.1.529) with major spike protein mutations has raised concern over potential neutralization escape and breakthrough infections among vaccinated and previously SARS-CoV-2-infected subjects. We measured cross-protective antibodies against variants in health care workers (HCW, n = 20) and nursing home residents (n = 9) from samples collected at 1-2 months, following the booster (3rd) dose. We also assessed the antibody responses in subjects infected before the Omicron era (n = 38) with subsequent administration of a single mRNA vaccine dose. Following booster vaccination, HCWs had high IgG antibody concentrations to the spike protein and neutralizing antibodies (NAb) were detectable against all variants. IgG concentrations among the elderly remained lower, and some lacked NAbs against the Beta and Omicron variants. NAb titers were significantly reduced against Delta, Beta, and Omicron compared to WT virus regardless of age. Vaccination induced high IgG concentrations and variable titers of cross-reactive NAbs in previously infected subjects, whereas NAb titers against Omicron were barely detectable 1 month postinfection. High IgG concentrations with cross-protective neutralizing activity were detected after three Coronavirus Disease 2019 (COVID-19) vaccine doses in HCWs. However, lower NAb titers seen in the frail elderly suggest inadequate protection against Omicron breakthrough infections, yet protection against severe COVID-19 is expected.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Health Personnel , Humans , Immunoglobulin G , RNA, Messenger , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
11.
Microbiol Spectr ; 10(2): e0225221, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1736039

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concern about increased transmissibility, infectivity, and immune evasion from a vaccine and infection-induced immune responses. Although COVID-19 mRNA vaccines have proven to be highly effective against severe COVID-19 disease, the decrease in vaccine efficacy against emerged Beta and Delta variants emphasizes the need for constant monitoring of new virus lineages and studies on the persistence of vaccine-induced neutralizing antibodies. To analyze the dynamics of COVID-19 mRNA vaccine-induced antibody responses, we followed 52 health care workers in Finland for 6 months after receiving two doses of BNT162b2 vaccine with a 3-week interval. We demonstrate that, although anti-S1 antibody levels decrease 2.3-fold compared to peak antibody levels, anti-SARS-CoV-2 antibodies persist for months after BNT162b2 vaccination. Variants D614G, Alpha, and Eta are neutralized by sera of 100% of vaccinees, whereas neutralization of Delta is 3.8-fold reduced and neutralization of Beta is 5.8-fold reduced compared to D614G. Despite this reduction, 85% of sera collected 6 months postvaccination neutralizes Delta variant. IMPORTANCE A decrease in vaccine efficacy against emerging SARS-CoV-2 variants has increased the importance of assessing the persistence of SARS-CoV-2 spike protein-specific antibodies and neutralizing antibodies. Our data show that after 6 months post two doses of BNT162b2 vaccine, antibody levels decrease yet remain detectable and capable of neutralizing emerging variants. By monitoring the vaccine-induced antibody responses, vaccination strategies and administration of booster doses can be optimized.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , RNA, Messenger , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination , Vaccines, Synthetic , mRNA Vaccines
12.
Water Res ; 215: 118220, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1700357

ABSTRACT

Wastewater-based surveillance is a cost-effective concept for monitoring COVID-19 pandemics at a population level. Here, SARS-CoV-2 RNA was monitored from a total of 693 wastewater (WW) influent samples from 28 wastewater treatment plants (WWTP, N = 21-42 samples per WWTP) in Finland from August 2020 to May 2021, covering WW of ca. 3.3 million inhabitants (∼ 60% of the Finnish population). Quantity of SARS-CoV-2 RNA fragments in 24 h-composite samples was determined by using the ultrafiltration method followed by nucleic acid extraction and CDC N2 RT-qPCR assay. SARS-CoV-2 RNA signals at each WWTP were compared over time to the numbers of confirmed COVID-19 cases (14-day case incidence rate) in the sewer network area. Over the 10-month surveillance period with an extensive total number of samples, the detection rate of SARS-CoV-2 RNA in WW was 79% (including 6% uncertain results, i.e., amplified only in one out of four, two original and two ten-fold diluted replicates), while only 24% of all samples exhibited gene copy numbers above the quantification limit. The range of the SARS-CoV-2 detection rate in WW varied from 33% (including 10% uncertain results) in Pietarsaari to 100% in Espoo. Only six out of 693 WW samples were positive with SARS-COV-2 RNA when the reported COVID-19 case number from the preceding 14 days was zero. Overall, the 14-day COVID-19 incidence was 7.0, 18, and 36 cases per 100 000 persons within the sewer network area when the probability to detect SARS-CoV-2 RNA in wastewater samples was 50%, 75% and 95%, respectively. The quantification of SARS-CoV-2 RNA required significantly more COVID-19 cases: the quantification rate was 50%, 75%, and 95% when the 14-day incidence was 110, 152, and 223 COVID-19 cases, respectively, per 100 000 persons. Multiple linear regression confirmed the relationship between the COVID-19 incidence and the SARS-CoV-2 RNA quantified in WW at 15 out of 28 WWTPs (overall R2 = 0.36, p < 0.001). At four of the 13 WWTPs where a significant relationship was not found, the SARS-CoV-2 RNA remained below the quantification limit during the whole study period. In the five other WWTPs, the sewer coverage was less than 80% of the total population in the area and thus the COVID-19 cases may have been inhabitants from the areas not covered. Based on the results obtained, WW-based surveillance of SARS-CoV-2 could be used as an indicator for local and national COVID-19 incidence trends. Importantly, the determination of SARS-CoV-2 RNA fragments from WW is a powerful and non-invasive public health surveillance measure, independent of possible changes in the clinical testing strategies or in the willingness of individuals to be tested for COVID-19.


Subject(s)
COVID-19 , Wastewater , COVID-19/epidemiology , Finland/epidemiology , Humans , Incidence , RNA, Viral , SARS-CoV-2
13.
Eur J Immunol ; 51(12): 3202-3213, 2021 12.
Article in English | MEDLINE | ID: covidwho-1439677

ABSTRACT

Most subjects develop antibodies to SARS-CoV-2 following infection. In order to estimate the duration of immunity induced by SARS-CoV-2 it is important to understand for how long antibodies persist after infection in humans. Here, we assessed the persistence of serum antibodies following WT SARS-CoV-2 infection at 8 and 13 months after diagnosis in 367 individuals. The SARS-CoV-2 spike IgG (S-IgG) and nucleoprotein IgG (N-IgG) concentrations and the proportion of subjects with neutralizing antibodies (NAb) were assessed. Moreover, the NAb titers among a smaller subset of participants (n = 78) against a WT virus (B) and variants of concern (VOCs): Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) were determined. We found that NAb against the WT virus persisted in 89% and S-IgG in 97% of subjects for at least 13 months after infection. Only 36% had N-IgG by 13 months. The mean S-IgG concentrations declined from 8 to 13 months by less than one third; N-IgG concentrations declined by two-thirds. Subjects with severe infection had markedly higher IgG and NAb levels and are expected to remain seropositive for longer. Significantly lower NAb titers against the variants compared to the WT virus, especially after a mild disease, suggests reduced protection against VOCs.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/immunology , Immunoglobulin G/metabolism , SARS-CoV-2/physiology , Adolescent , Adult , Aged , COVID-19/epidemiology , Cohort Studies , Coronavirus Nucleocapsid Proteins/immunology , Female , Finland/epidemiology , Humans , Male , Middle Aged , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Young Adult
14.
Microbiol Spectr ; 9(1): e0077421, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1352543

ABSTRACT

The primary target organ of coronavirus disease 2019 (COVID-19) infection is the respiratory tract. Currently, there is limited information on the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect and regulate innate immunity in human immune cells and lung epithelial cells. Here, we compared the ability of four Finnish isolates of SARS-CoV-2 from COVID-19 patients to replicate and induce interferons (IFNs) and other cytokines in different human cells. All isolates failed to replicate in dendritic cells, macrophages, monocytes, and lymphocytes, and no induction of cytokine gene expression was seen. However, most of the isolates replicated in Calu-3 cells, and they readily induced type I and type III IFN gene expression. The hCoV-19/Finland/FIN-25/2020 isolate, originating from a traveler from Milan in March 2020, showed better ability to replicate and induce IFN and inflammatory responses in Calu-3 cells than other isolates of SARS-CoV-2. Our data increase the knowledge on the pathogenesis and antiviral mechanisms of SARS-CoV-2 infection in human cell systems. IMPORTANCE With the rapid spread of the coronavirus disease 2019 (COVID-19) pandemic, information on the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and regulation of innate immunity in human immune cells and lung epithelial cells is needed. In the present study, we show that SARS-CoV-2 failed to productively infect human immune cells, but different isolates of SARS-CoV-2 showed differential ability to replicate and regulate innate interferon responses in human lung epithelial Calu-3 cells. These findings will open up the way for further studies on the mechanisms of pathogenesis of SARS-CoV-2 in human cells.


Subject(s)
COVID-19/immunology , Epithelial Cells/immunology , Immunity, Innate , Lung/immunology , SARS-CoV-2/isolation & purification , Virus Replication/physiology , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Cytokines/genetics , Epithelial Cells/virology , Gene Expression , Humans , Interferon Type I/genetics , Interferons/genetics , Kinetics , Lung/virology , Phylogeny , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Trypsin , Interferon Lambda
15.
Nat Commun ; 12(1): 3991, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1286457

ABSTRACT

As SARS-CoV-2 has been circulating for over a year, dozens of vaccine candidates are under development or in clinical use. The BNT162b2 mRNA COVID-19 vaccine induces spike protein-specific neutralizing antibodies associated with protective immunity. The emergence of the B.1.1.7 and B.1.351 variants has raised concerns of reduced vaccine efficacy and increased re-infection rates. Here we show, that after the second dose, the sera of BNT162b2-vaccinated health care workers (n = 180) effectively neutralize the SARS-CoV-2 variant with the D614G substitution and the B.1.1.7 variant, whereas the neutralization of the B.1.351 variant is five-fold reduced. Despite the reduction, 92% of the seronegative vaccinees have a neutralization titre of >20 for the B.1.351 variant indicating some protection. The vaccinees' neutralization titres exceeded those of recovered non-hospitalized COVID-19 patients. Our work provides evidence that the second dose of the BNT162b2 vaccine induces cross-neutralization of at least some of the circulating SARS-CoV-2 variants.


Subject(s)
Broadly Neutralizing Antibodies/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine , Broadly Neutralizing Antibodies/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Cross Protection/immunology , Female , Finland/epidemiology , Humans , Immunization, Secondary/methods , Immunization, Secondary/statistics & numerical data , Male , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , Middle Aged , Neutralization Tests/statistics & numerical data , Reinfection/immunology , Reinfection/prevention & control , Reinfection/virology , SARS-CoV-2/genetics , Young Adult
16.
J Infect Dis ; 224(2): 218-228, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1203709

ABSTRACT

BACKGROUND: Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. METHODS: We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), S1 and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. RESULTS: The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. S1 and RBD-based EIA results had a strong correlation with microneutralization test results. CONCLUSIONS: The data indicate a combination of SARS-CoV-2 S1 or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , Immunoenzyme Techniques , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Neutralization Tests , Phosphoproteins/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity
17.
Science ; 370(6518): 856-860, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-883299

ABSTRACT

The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Neuropilin-1/metabolism , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Betacoronavirus/genetics , COVID-19 , Caco-2 Cells , Female , HEK293 Cells , Host Microbial Interactions , Humans , Lung/metabolism , Male , Metal Nanoparticles , Mice , Mice, Inbred C57BL , Mutation , Neuropilin-1/chemistry , Neuropilin-1/genetics , Neuropilin-1/immunology , Neuropilin-2/metabolism , Olfactory Mucosa/metabolism , Olfactory Mucosa/virology , Pandemics , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Domains , Respiratory Mucosa/metabolism , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry
18.
Euro Surveill ; 25(11)2020 03.
Article in English | MEDLINE | ID: covidwho-18570

ABSTRACT

The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3-23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.


Subject(s)
Contact Tracing , Coronavirus Infections , Coronavirus/genetics , Coronavirus/isolation & purification , Pandemics , Pneumonia, Viral , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Travel , Adult , Antibodies, Viral/blood , Asymptomatic Infections , Betacoronavirus , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Finland , Fluorescent Antibody Technique , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/virology , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL